An LLM cannot think like you and I. it’s not able to solve entirely new problems. And it doesn’t have a concept of the world - it paints hands without knowing what a hand does.
It is a system which learns the rules of something by means of reinforcement learning to tune the coefficients of its heap of linear equations. It is better than a human in its area. I guess it can be good for tedious, repetitive tasks. Nevertheless it is just a huge coefficient matrix.
But it can only reproduce what is in the training data - you need lots of already solved examples in the training data. It doesn’t work for entirely new problems.
(that’s also the reason, why LLMs don’t give good answers to questions about specialized niche topics. When there are just one or two studies, there just isn’t enough training data for the LLM.)
An LLM cannot think like you and I. it’s not able to solve entirely new problems. And it doesn’t have a concept of the world - it paints hands without knowing what a hand does.
It is a system which learns the rules of something by means of reinforcement learning to tune the coefficients of its heap of linear equations. It is better than a human in its area. I guess it can be good for tedious, repetitive tasks. Nevertheless it is just a huge coefficient matrix.
But it can only reproduce what is in the training data - you need lots of already solved examples in the training data. It doesn’t work for entirely new problems.
(that’s also the reason, why LLMs don’t give good answers to questions about specialized niche topics. When there are just one or two studies, there just isn’t enough training data for the LLM.)
This was already disproven a year ago.
They replaced the training data with an evaluator. (which rates the LLMs output for training?) Interesting, thanks.
Edit: this reminds me of the self evolving (virtual) robot problem, a robot which is rated by an external moderator and improves over time. I.e.: https://www.sciencedirect.com/science/article/pii/S0925231221003982